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On the Power Spectrum of Angle-Modulated
Phase-Shift-Keyed Signals Corrupted

by Intersymbol Interference
M. K. Simon

Communications Systems and Research Section

Using a matrix method proposed a number of years ago by Prabhu and Rowe for
computing the power spectrum of a sinusoidal carrier phase modulated by a random
baseband pulse train, we obtain explicit expressions for this power spectrum when
the signaling is M-ary phase shift keying (M-PSK) in the presence of intersymbol
interference (ISI) brought about by transmitter pulse shaping. Particular attention
is paid to the conditions on the pulse shape (and hence the transmit filter) under
which a discrete spectral component can exist.

I. Introduction

In the study of digital phase modulation techniques, it is often of interest to compute the power
spectrum of the resulting carrier-modulated waveform. In bandlimited systems, this computation must
be made in the presence of intersymbol interference (ISI) applied to the baseband angle modulation.
Many techniques exist in the literature for computing the power spectra [1–9] of a sinusoidal carrier
phase modulated by a random baseband pulse train with symbols taken from an M -ary alphabet. Of
these, the most convenient for the purpose at hand, namely, where the pulses in the train overlap in
time, is a matrix method proposed by Prabhu and Rowe [9]. Although the formulation in [9] is quite
general in that it allows for arbitrary pulse shapes and a priori probabilities for the M possible signals
assigned to the M -ary alphabet, our purpose here is to abstract from this reference specific results for the
special case of binary phase-shift-keyed (PSK) modulation transmitted through a bandlimited channel
and document them in a form that is readily accessible to users of such a modulation scheme. As such,
the signal model consists of passing a binary pulse train of rate 1/T with rectangular pulses through a
filter of bandwidth B (which inherently introduces ISI) and then angle modulating this waveform onto a
sinusoidal carrier with known frequency but random phase. As we shall see, the nonlinear nature of the
modulation, namely, phase modulation of a carrier, results in an equivalent complex baseband process
with, in general, both discrete and continuous spectrum components. In fact, for such a nonlinear phase
modulation, the only instance1 in which the discrete spectrum vanishes is when the received baseband
pulses are equal to the transmitted rectangular (time limited to T s) ones, i.e., zero ISI with no pulse
shaping. Even pulse shaping alone without ISI will result in the presence of a discrete spectrum for the
phase-modulated waveform.

1 Actually, any purely digital (±1) pulse shape for g(t) will result in a vanishing discrete spectrum and, thus, this statement
is not restricted to only purely rectangular (single ±1-level) pulses.
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II. Mathematical Signal Model

Consider a digital angle-modulated carrier of the form

x(t) = Re {exp [j2πfct+ φ(t) + θ]} (1)

where fc is the carrier frequency, θ is random phase assumed to be uniformly distributed in (−π, π), and
φ(t) is a digital angle modulation. Then, the power spectrum of x(t) can be expressed in terms of the
power spectrum of the equivalent complex baseband modulation, v(t) = exp (jφ(t)), by

Sxx(f) =
1
4
Svv (f − fc) +

1
4
Svv (f + fc) (2)

Assume now that φ(t) is in the form of a binary PSK signal2 (with rectangular T -s pulses) that has been
passed through an ISI-producing filter, which results in a pulse shape, g(t), that extends over K symbol
(T -s) intervals. As such,

φ(t) = θm

∞∑
k=−∞

akg (t− kT ) (3)

where ak denotes the data bit in the kth signaling interval that takes on values ±1 with equal probability.
Following the notation in [9], the domain of g(t) is defined as follows:

g(t) = 0,
t ≤ −K − 1

2
T, t >

K + 1
2

T ; K odd

t ≤ −K
2
T, t >

K

2
T ; K even

(4)

We shall begin by considering the power spectrum Svv(f) of the equivalent complex baseband modulation
v(t) for the case of time-limited pulses, i.e., K = 1.

III. Power Spectrum for Nonoverlapping Pulses— K = 1

Define the two equivalent complex baseband signals

r1(t) =
{

exp (jθmg(t)) ; 0 ≤ t ≤ T
0; otherwise

r2(t) =
{

exp (−jθmg(t)) ; 0 ≤ t ≤ T
0; otherwise


(5)

corresponding to the two possible data bit values transmitted in the zeroth transmission interval. Also,
define the Fourier transforms of these complex signals by

2 For generality, we assume an arbitrary modulation angle, θm, rather than the more conventional π/2 value.
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R1(f) = F {r1(t)} =
∫ T

0

exp (jθmg(t)) e−j2πftdt

R2(f) = F {r2(t)} =
∫ T

0

exp (−jθmg(t)) e−j2πftdt


(6)

Then the line (discrete) component, Svvl(f), and the continuous component, Svvc(f), of the power spec-
trum of v(t) are given by

Svvl(f) =
1

2T 2
|R1(f) +R2(f)|2

∞∑
n=−∞

δ
(
f − n

T

)

Svvc(f) =
1

4T
|R1(f)−R2(f)|2


(7)

where, from Eq. (6),

|R1(f) +R2(f)|2 =

(∫ T

0

2 cos (θmg(t)) cos 2πftdt

)2

+

(∫ T

0

2 cos (θmg(t)) sin 2πftdt

)2

|R1(f)−R2(f)|2 =

(∫ T

0

2 sin (θmg(t)) cos 2πftdt

)2

+

(∫ T

0

2 sin (θmg(t)) sin 2πftdt

)2


(8)

Note that if g(t) is a unit rectangular pulse shape, i.e., no pulse shaping and zero ISI, then

|R1(f) +R2(f)|2 = 4 cos2 θm

∣∣∣∣∣
∫ T

0

e−j2πftdt

∣∣∣∣∣
2

= 4 cos2 θmT
2

(
sinπfT
πfT

)2

|R1(f)−R2(f)|2 = 4 sin2 θm

∣∣∣∣∣
∫ T

0

e−j2πftdt

∣∣∣∣∣
2

= 4 sin2 θmT
2

(
sinπfT
πfT

)2


(9)

and, from Eq. (7), the spectrum becomes

Svv(f) = T sin2 θm

(
sinπfT
πfT

)2

+ 2 cos2 θmδ(f) (10a)

For the special case of θm = π/2, the discrete line spectrum vanishes and the continuous component of
the spectrum becomes the well-known result

Svv(f) = Svvc(f) = T

(
sinπfT
πfT

)2

(10b)
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An intuitive explanation of why there exists a discrete spectrum in a carrier that is phase modulated
by a pulse-shaped data stream is as follows: Consider the signal of Eq. (1), which, when combined with
Eq. (3), is rewritten as (ignoring the random phase)

x(t) = cos

(
2πfct+

π

2

∞∑
k=−∞

akg (t− kT )

)
(11)

Applying simple trigonometry to Eq. (11), we get

x(t) = cos (2πfct) cos

(
π

2

∞∑
k=−∞

akg (t− kT )

)
− sin (2πfct) sin

(
π

2

∞∑
k=−∞

akg (t− kT )

)

= cos (2πfct)
∞∑

k=−∞
cos
(π

2
g (t− kT )

)
− sin (2πfct)

∞∑
k=−∞

ak sin
(π

2
g (t− kT )

)
(12)

Defining the effective in-phase (I) and quadrature-phase (Q) pulse shapes by

pI(t) = cos
(π

2
g (t)

)

pQ(t) = sin
(π

2
g (t)

)
 (13)

we can rewrite Eq. (12) in the form

x(t) = cos (2πfct)
∞∑

k=−∞
pI (t− kT )− sin (2πfct)

∞∑
k=−∞

akpQ (t− kT ) (14)

The first term in Eq. (14), which is data independent, represents a carrier modulated by a periodic (with
period T ) waveform and as such has a purely discrete spectrum. The second term in Eq. (14) is a PSK
modulation with pulse shape pQ (t) and thus has a purely continuous spectrum. Hence, the first term of
Eq. (14) accounts entirely for the discrete spectrum in Eq. (11), and the second term of Eq. (14) accounts
entirely for the continuous spectrum in Eq. (12). Because of this partitioning, one could, if desired,
remove the discrete spectrum from Eq. (11) by generating the first term in Eq. (14) and then subtracting
this out from Eq. (11). However, since the subtraction occurs after the phase modulation, the resulting
waveform no longer has a constant envelope. Also note that if g(t) is a purely rectangular unit amplitude
pulse, then from Eq. (13), pI(t) = 0 and pQ(t) = g(t), in which case the first term (discrete spectrum) of
Eq. (14) vanishes and the second term becomes a PSK modulation with the original pulse shape g(t).

IV. Power Spectrum for Overlapping Pulses— K Arbitrary

Consider a data sequence whose corresponding pulses would contribute to the signal in the interval
0 ≤ t ≤ T . In particular, let a 4= (am1 , am1+1, . . . , am2), where

4



m1 =
− (K − 1)

2
, m2 =

(K − 1)
2

; K odd

m1 = −
(
K

2

)
+ 1, m2 =

K

2
; K even

 (15)

Also define the ith such sequence (corresponding to a particular set of +1’s and −1’s for the ai’s)
by a(i) 4=

(
a

(i)
m1 , a

(i)
m1+1, . . . , a

(i)
m2

)
; i = 1, 2, . . . , 2K . Analogous to Eq. (5), define the set of complex

baseband signals

ri(t) =

 exp
(
jθm

m2∑
m=m1

a
(i)
m g (t−mT )

)
; 0 ≤ t ≤ T

0; otherwise
, i = 1, 2, . . . , 2K (16)

with associated Fourier transforms

Ri(f) = F {ri(t)} =
∫ T

0

exp

(
jθm

m2∑
m=m1

a(i)
m g (t−mT )

)
e−j2πftdt, i = 1, 2, . . . , 2K (17)

Then, the discrete line spectrum of v(t) is, analogous to Eq. (6), given by

Svvl(f) =
1

2KT 2

∣∣∣∣∣∣
2K∑
i=1

Ri(f)

∣∣∣∣∣∣
2
∞∑

n=−∞
δ
(
f − n

T

)
(18)

Since for each sequence a(i) there also exists the complement of this sequence in the complete set
of 2K sequences, then the Fourier transforms of Eq. (17) can be combined for each of these pairs of
complementary sequences and, hence, Eq. (18) can be slightly simplified to

Svvl(f) =
1

2KT 2

∣∣∣∣∣∣
2K−1∑
i=1

R′i(f)

∣∣∣∣∣∣
2
∞∑

n=−∞
δ
(
f − n

T

)
(19)

where

R′i(f) =
∫ T

0

2 cos

θm
g(t) +

m2∑
m=m1
m6=0

a(i)
m g (t−mT )

 e−j2πftdt (20)

Note that even for θm = π/2, a discrete spectrum component will, in general, exist.

In the case of overlapping pulses (K > 1), the computation of the continuous component of the
spectrum of v(t) is significantly more formidable. After considerable matrix simplification, the result can
be put in the following form:
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Svvc(f) =
1

2KT

2K∑
i=1

|Ri(f)|2 − 1
22KT

(
K−1∑
n=0

εn cos 2πfnT

)
2K∑
i=1

2K∑
j=1

Ri(f)R∗j (f)

+
1
T

K−1∑
n=1

1
2K+n

2 Re

e−j2πfnT
2K−n∑
k=1

(
2n∑
l=1

R2n×(k−1)+l(f)

)(
2n−1∑
i=0

R∗i×2K−n+k(f)

) (21)

where εn is the Neumann factor defined by

εn =
{

1; n = 0
2; n 6= 0 (22)

As an example, consider the case of ISI that results in a pulse duration of three bit intervals, i.e.,
K = 3. Then, the domain of definition for g(t) is −T < t ≤ 2T and the set of signal Fourier transforms
of Eq. (16) becomes

R1(f) =
∫ T

0

exp (jθm [g (t+ T ) + g(t) + g (t− T )]) e−j2πftdt

R2(f) =
∫ T

0

exp (jθm [g (t+ T ) + g(t)− g (t− T )]) e−j2πftdt

R3(f) =
∫ T

0

exp (jθm [g (t+ T )− g(t) + g (t− T )]) e−j2πftdt

R4(f) =
∫ T

0

exp (jθm [g (t+ T )− g(t)− g (t− T )]) e−j2πftdt

R5(f) =
∫ T

0

exp (jθm [−g (t+ T ) + g(t) + g (t− T )]) e−j2πftdt

R6(f) =
∫ T

0

exp (jθm [−g (t+ T ) + g(t)− g (t− T )]) e−j2πftdt

R7(f) =
∫ T

0

exp (jθm [−g (t+ T )− g(t) + g (t− T )]) e−j2πftdt

R8(f) =
∫ T

0

exp (jθm [−g (t+ T )− g(t)− g (t− T )]) e−j2πftdt



(23)

From Eq. (18), the discrete spectrum is given by

Svvl(f) =
1

8T 2

∣∣∣∣∣
8∑
i=1

Ri(f)

∣∣∣∣∣
2 ∞∑
n=−∞

δ
(
f − n

T

)
(24)
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and the continuous spectrum is from Eq. (21):

Svvc(f) =
1

8T

∣∣∣∣∣
8∑
i=1

Ri(f)

∣∣∣∣∣
2

− 1
64T

(1 + 2 cos 2πfT + cos 4πfT )
8∑
i=1

8∑
j=1

Ri(f)R∗j (f)

+
1

8T
Re
{
e−j2πfT [(R1(f) +R2(f)) (R∗1(f) +R∗5(f))

+ (R3(f) +R4(f)) (R∗2(f) +R∗6(f)) + (R5(f) +R6(f)) (R∗3(f) +R∗7(f))

+ (R7(f) +R8(f)) (R∗4(f) +R∗8(f))]}

+
1

16T
Re
{
e−j4πfT [(R1(f) +R2(f) +R3(f) +R4(f)) (R∗1(f) +R∗3(f) +R∗5(f) +R∗7(f))

+ (R5(f) +R6(f) +R7(f) +R8(f)) (R∗2(f) +R∗4(f) +R∗6(f) +R∗8(f))]} (25)

The intuitive explanation for the presence of a discrete spectrum in a carrier that is phase modulated
by a data stream containing overlapping pulses follows along the same lines as that given at the end of
Section III. In particular, if the duration of g(t) extends K pulse intervals as specified in Eq. (4), then
the phase-modulated carrier of Eq. (11) can be organized in the form

x(t) = cos (2πfct)
∞∑

k=−∞
qI (t− kT ; ak)− sin (2πfct)

∞∑
k=−∞

qQ (t− kT ; ak) (26)

where ak
4= (am1+k, am1+k+1, . . . , am2+k) is the sequence of data bits that contribute to the kth trans-

mission interval, the integers m1 and m2 are defined in Eq. (15), and

qI (t− kT ; ak) =


cos

(
π

2

m2∑
m=m1

am+kg (t−mT − kT )

)
, kT ≤ t ≤ (k + 1)T

0, otherwise

qQ (t− kT ; ak) =


sin

(
π

2

m2∑
m=m1

am+kg (t−mT − kT )

)
, kT ≤ t ≤ (k + 1)T

0, otherwise


(27)

are the effective T -s duration pulse shapes for that same time interval that depend on the data sequence.
Applying successive trigonometric expansions to the sine and cosine terms in Eq. (27), we finally arrive
at the following form for Eq. (26):

x(t) = cos (2πfct)
∞∑

k=−∞
pI (t− kT ) + terms that are data dependent (28)
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where

pI(t) =


m2∏

m=m1

cos
(π

2
g (t−mT )

)
, 0 ≤ t ≤ T

0, otherwise

(29)

is the equivalent T -s duration pulse shape that represents the envelope of the discrete carrier. Once
again, since the first term in Eq. (28) is a periodic function with period T , it contributes a purely
discrete spectrum, whereas the remaining data-dependent terms contribute the continuous component of
the overall spectrum. Note that Eq. (29) suggests that if at least one of the K T -s segments of g(t) is
purely ±1 digital, e.g., constant and equal to +1, then pI(t) = 0 and the discrete spectrum vanishes. For
example, phase modulating the carrier with a pulse stream having the 3T -s duration trapezoid

g(t) =



t+ T

T
, −T ≤ t ≤ 0

1, 0 ≤ t ≤ T

− t− 2T
T

, T ≤ t ≤ 2T

(30)

would have no discrete spectrum.

The form of Eq. (29) suggests that the general expression for the discrete spectrum given in Eq. (18)
can be simplified. In fact, it is straightforward to show that continued pairwise combination of the terms
in the sum of the Ri(f)’s results in the following expression:

Svvl(f) =
1

2KT 2

∣∣2KPI(f)
∣∣2 ∞∑
n=−∞

δ
(
f − n

T

)
(31)

where PI(f) is the Fourier transform of pI(t) of Eq. (29), whose squared magnitude is given by

|PI(f)|2 =

(∫ T

0

m2∏
m=m1

cos
(π

2
g (t−mT )

)
cos 2πftdt

)2

+

(∫ T

0

m2∏
m=m1

cos
(π

2
g (t−mT )

)
sin 2πftdt

)2

(32)

V. Extension to M-ary PSK

If now the phase modulation φ(t) corresponds to M -ary PSK, then Eq. (3) becomes

φ(t) =
π

M

∞∑
k=−∞

akg (t− kT ) (33)

where ak takes on values ±1,±3, . . . ,±(M − 1), each with probability 1/M . Defining the set of M time-
limited pulses by
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ri(t) =

 exp
(
j
π

M
(M − (2i− 1)) g(t)

)
; 0 ≤ t ≤ T

0; otherwise
, i = 1, 2, . . . ,M (34)

with corresponding Fourier transforms

Ri(f) = F {ri(t)} =
∫ T

0

exp
(
j
π

M
(M − (2i− 1)) g(t)

)
e−j2πftdt, i = 1, 2, . . . ,M (35)

then for nonoverlapping pulses (K = 1), we now get [analogous to Eq. (7)]

Svvl(f) =
1

MT 2

∣∣∣∣∣
M∑
i=1

Ri(f)

∣∣∣∣∣
2 ∞∑
n=−∞

δ
(
f − n

T

)

Svvc(f) =
1

2M2T

M∑
i=1

M∑
j=1

|Ri(f)−Rj(f)|2


(36)

For overlapping pulses with arbitrary K, we now get [analogous to Eqs. (18) and (21)]

Svvl(f) =
1

MKT 2

∣∣∣∣∣∣
MK∑
i=1

Ri(f)

∣∣∣∣∣∣
2
∞∑

n=−∞
δ
(
f − n

T

)
(37)

and

Svvc(f) =
1

MKT

MK∑
i=1

|Ri(f)|2 − 1
M2KT

(
K−1∑
n=0

εn cos 2πfnT

)
MK∑
i=1

MK∑
j=1

Ri(f)R∗j (f)

+
1
T

K−1∑
n=1

1
MK+n

2 Re

e−j2πfnT
MK−n∑
k=1

(
Mn∑
l=1

RMn×(k−1)+l(f)

)(
Mn−1∑
i=0

R∗i×MK−n+k(f)

) (38)

where, analogous to Eq. (17),

Ri(f) = F {ri(t)} =
∫ T

0

exp

(
j
π

M

m2∑
m=m1

a(i)
m g (t−mT )

)
e−j2πftdt, i = 1, 2, . . . ,MK (39)

and the ai’s in the sequence a(i) 4=
(
a

(i)
m1 , a

(i)
m1+1, . . . , a

(i)
m2

)
; i = 1, 2, . . . ,MK each range over the set of

values ±1,±3, . . . ,±(M − 1).
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VI. Conclusions

For a sinusoidal carrier that is phase modulated by a random pulse train whose pulses are both shaped
and overlapping, the discrete spectrum vanishes only when the transmitted pulse shape is purely digital
(+1), e.g., NRZ or Manchester signaling, corresponding to zero ISI with no pulse shaping. Even pulse
shaping alone without ISI will result in the presence of a discrete spectrum for the phase-modulated
carrier.
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